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Received 8 August 1994 

Abstract. The Zeros of the partition function in the one-dimensional y-state Potts model with 
a h i t r w  and continuous q > 0 have been studied using a tnnsfer matrix. The location of zeros 
and the Yang-Lee edge singularity hove been analysed, and two different regimes. corresponding 
to q > 1 and q c I ,  have been observed. A duality relation has also been derived. which relates 
the zeros in the complex held plane to those in the complex tempemure plane. 

1. Introduction 

In order to better understand a phase transition in a certain model, it appears to be useful 
to study the distribution and behaviour of zeros of the partition function of this model in 
the plane of the complex symmetry breaking field or complex temperature. 

In 1952, Yang and Lee (1952) formulated a theorem stating that for the king model with 
positive interactions these zeros are located on the unit circle of the complex activity plane. 
They pointed out a direct connection between the function representing the density of these 
zeros with the thermodynamic functions describing the phase transition. Their work was 
followed by a number of generalizations of their theorem to other statistical models such as 
quantum and classical Heisenberg models, the classical n-component model, models with 
s > $, the spherical model, models with multispin interactions. etc (for a review see. for 
example, Kurtze 1979). 

Another interesting aspect related to this subject arose when it was shown (Fisher 1978) 
that the singularity existing at the edge value of Yang-Lee zeros can be considered by itself 
as a new second-order phase transition, different from the original one belonging to the zero 
symmetry breaking field. 

We would like to consider both of these aspects for a simple one-dimensional case of 
the Potts model. The Potts model, although simple in formulation, hides a whole series of 
statistical models obtained by the different choice of the number of states q, including the 
Ising model as a special case with q = 2. For the Potts model various numerical studies 
exist in the complex temperature plane. performed for particular values of q in two and 
three dimensions (Pearson 1982, Bonnier and Leroyer 1991). 

The aim of the present paper is to use the possibility of an analytic approach by using a 
transfer matrix in one dimension, to perform a systematic study for arbitrary and continuous 
q. Zeros will be calculated not by solving the polynomial, but directly by analysing the 
transfer-matrix eigenvalues. 

As will be shown, two distinct regimes arise, corresponding to q z I and q c 1. 
While in the first one the king-like behaviour can be recovered, the second one displays a 
completely different, rather exotic behaviour with zeros on the real axis. 
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Another interesting feature specific for the ID case is that for the Ising model the duality 
transformations between the field and temperature variables have been established (Suzuki 
1967). We shall present the generalization of thcse duality properties io the Potts case 
with arbitrary q. This brings an interesting correspondence between the complex field and 
complex temperature planes. 

At the beginning of the next section we present the model and point out the connection 
between the degeneracy of eigenvalues of the transfer matrix and the zeros of the partition 
function in the thermodynamic limit. The following three subsections are devoted to the 
detailed treatment of the model corresponding to 9 > 1, q c 1 and 9 = I .  The duality 
relation between the field and temperature variables is presented in the third section. The 
conclusion is given at the end. 

2. Model 

We consider the I D  nearest-neighbour ferromagnetic 9-state Potts model in the complex 
symmetry breaking field described by the following reduced Hamiltonian: 

where in denotes q-state Potts variable at site n, N is the total number of particles, K is the 
reduced nearest-neighbour interaction strength in units J = kg, h = H / k B T  is the reduced 
external field coupled to the Potts state 0, and T is the temperature. 

The andytic solution for thermodynamic properties of this model is straightforward 
using a transfer matrix. The partition function is then written as 

(2) Z N = T r T  N 

where the elements of the transfer matrix T are given by 

T(i, j )  = exp K [s(i, j )  - i] exp h [ s ( j ,  0) - -!] . (3) 

Originally of order q ,  T is reduced by invariance to permutations leaving the Potts state 0 
unchanged to the 2 x 2 sub-matrix 

and (q - 2) identical diagonal elements proportional to y - I ,  where y = exp(K) and 
z = exp(h). The expressions for the eigenvalues A, are 

(5 )  

A 2 = . . . = b  *-I = (Y - ~ ) ~ - ( K t h ) / q ,  (6) 
These expressions also extend to non-integer 9. The same eigenvalues are obtained 
when performing the analogous calculation within the continuous-q formalism (Blote and 
Nightingale 1982), which produces a transfer matrix of the form 

A0,l =;([la t 2 )+q -21+J~) . (1 - l )+q -21  2 + (q - 1)4z}e-W+W~ 

u t  uu 1 + U  0 e-(X+h)'q (7) 
O K  O 1  

u + u + q u u  1 

9 [  vu 

where v = (z  - 1)/9 and U = ( y  - l ) / q .  Consequently, in the following, 9 will be treated 
as a real parameter. 



Partition function zeros in I D  q-state Pons model 7711 

We are interested in zeros of the partition function, i.e. the solution of the equation 
Z N  = 0 within this transfer-matrix approach. Close to the thermodynamic limit the dominant 
contribution comes from the largest eigenvalues, and one can distinguish two cases. 

In the first case the largest eigenvalue is a singlet. The partition function is given by 

ZN = A& [ I  + 0 ((Ai/hm)")] / A i l  c Ama (8) 

which reduces the solution to the equation A,, = 0. 

with equal absolute values. Then, one has 
A qualitatively different case arises when the two largest eigenvalues are complex, but 

Z N  = h n a x l  [ ei" + eiN+'l + o ((A~/A,,)~)] lhi/ < l~,,,~] (9) 
where yo and pl denote the different phases of ho and hr. The zeros are then obtained for 
cos(Np) = 0, i.e. when p = (PO - p 1 ) / 2  = n(2n + 1 ) / ( 2 N )  for n = 0, 1.. . . , N - 1. 

Another important situation occurs when the two largest eigenvalues become degenerate, 
i.e. when the expression under the square root in (5) vanishes. The expression (5) can be 
rewritten in a more transparent notation as 

where we defined new variables 

depending only on temperature and q .  The degeneracy is achieved for the two values of 
the field 

(12) 2 z * = t + .  

By analogy with the king case, we shall call the points z+ the Yang-Lee edges. It 
will be shown later that they do actually represent the edges of the partition function zeros. 
Also. it will be shown that this degeneracy is related to a second-order phase transition, the 
Yang-Lee edge singularity, and that the corresponding critical exponents are equal to those 
for the Ising case. 

We shall distinguish two regimes corresponding to q z 1 and q < 1. 

2.1. q P I 

In this region, the behaviour of zeros can be presented as a simple generalization of the 
Ising case. 

By using the notation z = eh'"'', where we decomposed the symmetry breaking field 
into its real (h') and imaginary (h") parts, the positions of the Yang-Lee edges (hb, &h i )  
are given by 

In the temperature range 0 < K < CO they lie in the interval 

- n < h g < n  for q a 2  
(15) 

0 < hb < In(q - 1) 
I n ( q - I ) < h b < O  - x < h $ < ~  for l < q < 2 .  



Figure 1. Positions of YL edges (the endpoints of  ems of the partition function) in the complex 
r-plane for different values of temperature. Values for q = 1.5 me denoted by a dotted curve, 
those for q = 2.0 by a full curve, and for q = 4.0 by a broken curve. 

We observe that, unIike the king case, the real field component is different from zero, so 
that, with varying temperature, zj: move along a certain contour in the complex z-plane 
instead of the unit circle (figure 1). 

This difference can be ruled out by replacing the variable z with the reduced-field 
variable i defined by 

so that the Yang-Lee edges will again fall on the unit circle for all q > 1. 
In order to find the zeros we start from the Yang-Lee edge positions and consider the 

structure of eigenvalues while fixing the real part of h to its Yang-Lee edge value hh. 
Equation (10) then gives 

For lh"l < lhgl, the difference between .la and 
are absent. For lh"l 2 lhg[ we obtain 

is real, there is no degeneracy and zeros 

1)(y + q  - l)e-Z'K+hb)/y 3. 1,t2lZ. (18) lblZ = 1 ~ 1 1  - e "(Y - 
The eigenvalues and A I  are equal in absolute values and larger than 12. This locates 
the zeros outside the interval (-hg, hg), on the circle of radius eh;#. Their positions on the 

2 -  h' 
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circle follow from the condition on the phase difference rp = (pa - rppl)/Z between ho and 
A l .  

tanrp = ( 19) 
cos fh"  

In the i-plane the zeros lie on the unit circle and are given by 

&(n) = 2 c o s 2 p n c o s 2 ~ h ; ; -  1 =t2iJcos2p,cos2fhg[l - c o s 2 ~ ~ c o s 2 f h ~ ]  (20) 

with p, = z ( 2 n  + 1)/(2N) and n = 0 , 1 , .  . . ~ N (where N = N/2  - I for N even, and 
N = (N  - 1)/2 for N odd). 

By transition to the continuum in the standard way, we obtain the expression for the 
density of zeros g(h& h"), 

sin Iih''[ 
Ih"l > h; 1 

2lr Je (21) 1: 4; < h" < hg . 
g(hb, h") = 

Equation (21) shows the cumulation of zeros around +hg and the divergence of their density. 
The corresponding critical exponent U, defined by 

g(hb, h" = *hg rt 0) Ih" - h" 01 (22) 

is equal to - f  for every q > 1. 
One can also easily calculate the exponent of the correlation length given by 

Expansion around YL edges gives v = 4, independently of q > I .  

2.2. 

For 0 < q e 1, the values for t i  in (1 1) become real, which leads to a very unusual situation 
where points z+ lie on the positive real z-axis for the entire range of temperatures. 

Let us first examine (10) by constraining z to the real axis. The eigenvalues 10.1 are 
real and non-degenerate outside the interval (z-, zi), and complex-valued with the same 
magnitude for z -  < z < z+. Inside the interval z -  < z < z+, the third eigenvalue hz is also 
to be taken into account. Namely, one can define points z * ( K )  on the real axis (figure 2) 

0 < q < I 

* Y - 1  z =  
y + 4 - 1  

where Ihol = lbll = /bzj. For z* < z 6 z+, it holds that llol = l X l l  > 1x21, while for 
z- < z e z* one has l1z1 > lhol = 1111. 

Let us consider first the temperature range with only one regime, IAo,ll > p.21. i.e. 
where K < KO = In[l + (& - q)/2]. The zeros in this region can be calculated from the 
equation 

(z+ - z ) ( z  - z - )  tan$?= 
f+t- + z 
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Figure 2. Positions of red values o f t +  (dotted curve), I -  (broken curve) and I* (full curve) 
for q = 0.5 as a function of temperature. 

which is an analogue of (19) for q > 1 models. It follows that, in this case, all zeros are 
located within the real interval (2-, zt). In the thermodynamic limit, the density of zeros 
obtained from the above equation is 

1 e - t+t- g ( h ' )  = - 
27r J(z+ - z ) ( z  - 2 - )  ' 

It diverges in both points z+ and z -  with the exponent f .  
For temperatures corresponding to K > KO, the two regimes bring a more complex 

behaviour. One part of the zeros lies w/thin the real interval (z', z + ) .  The rest of the zeros 
should lie in the complex plane. Indeed, if we extend the real interval (z-, z*) to complex 
values, one obtains lhol = 1121 > Ihl I, which leads to zeros of the partition function placed 
in complex-conjugate pairs in the z-plane. 

In the thermodynamic limit, the zeros on the real z-axis only accumulate around the zt 
point, and the density of zeros diverges with :he exponent (as for q > 1 models), 

At the point z = z*, :he density g(h') is finite. 

behaviour of a in both variables (temperature and field) with the same exponent v = 4. 
By expanding the correlation length e(h', T) around z = z+, one obtains the singular 
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2.3. 9 = I 

The model with 9 = I shows a different behaviour for zeros of the partition function 
compared to the q # I models. The positions of zeros are given by 

n = 0, 1 , .  . . , N - 1 (28) y - ezi(Zn+l)/N z(n) = - 
Y 

i.e. they lie on the circle in the z-plane whose radius depends on temperature, but the 
distribution of zeros on the circle is temperature-independent and equidistant and leads to 
the constant value of the density of zeros in the thermodynamic limit, 

3. Duality relation 

It has  already been pointed out for the king model (Suzuki 1967) that in one dimension 
there is a simple duality between field and temperature. 

This duality can be generalized to the present problem (1) by using a transformation 
similar to the one used by Kramers and Wannier (1941) for the ZD king  model, 

ST(y, z ) S '  = uTT(yD, zD), (30) 

where yD and zD are the dual variables. In the present case the rows of the transformation 
matrix S are the eigenvectors of the operator K which performs the cyclic translation in the 
space of Potts states. The definitions of K and their eigenvectors I&) are 

Kli) = I(i + ] ) d i p ) )  i = 0,1,. . . , 9  - 1 (31) 

K I K J  = w"l&) n = 0, I ,  . . . , q - 1 

By performing the transformation (30) for arbitrary 9 ,  we obtain 

z + q - I  D - )  ' + q - l  
z - 1  y - 1  

= z -  (34) 

and 

a =  (y - ')lZ - l),(KD+hD~/Ue-IK+.h)/~ (35) 

Equation (30) establishes the connection between partition functions in dual and non-dual 
variables 

4 

or, symmetrically, in the y variable, 

Equation (37) connects the analytic properties of ZN(Y. z,  9 )  and ZN(~ ' ,  zD,  9 ) .  In 
particular, the n edges and the zeros of the partition function in the complex y-plane 
are the dual images of those in the complex z-plane obtained in  sections 2.1 and 2.2. For 
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Re Y 

Figure 3. Positions of YL edges (the endpoints of zeros of the partition function) in the complex 
y-plane for different values of the field. Values for q = 1.5 are denoted by a dotted curve. those 
for q = 2.0 by a full curve, and for q = 4.0 by a broken curve, 

example, the YL edges for all q,  and the zeros of the partition function in the complex 
y-plane for q > 1, are given by 

(38) 
1 

z - 1  
y* = -19 - 2 * 2- 

(q -2 ) (zcos2~ , -1 ) r2 i Jzcos2 rp . [ ( z iq -  l ) (zq-z+ 1)-cos*vnzq*1 

1 -2zcos2rP ,+z~ y d n )  = 

(39) 
respectively. 

contours in the complex z-plane (figure 1) obtained for the same values of q. 

4. Conclusion 

An analytic study of the distribution of zeros using the transfer matrix was performed for 
the ID Potts model with arbitrary and continuous q 3 0. Two different regimes are observed 
corresponding to q > I and q 

For q > 1 the behaviour is similar to that of the king model. The zeros lie on the 
circle in the complex z-plane. but the radius of that circle is not unity for q # 2, and varies 
with temperature. Points corresponding to the Yang-Lee edges can also be defined, but For 

In figure 3 one can compare the YL edge contours in the complex y-plane with the 

1. 
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the same reasons they move along a contour different from a circle when the temperature 
varies. By extracting the real field contribution, we recover the zeros on the unit circle, as 
in the Ising case. 

For q < 1 we observe a pathological situation, where for all temperatures the zeros lie 
in part or completely (depending on temperature) on the real axis and cumulate around a 
point on the real axis. This would mean that we obtain the second-order phase transition 
at finite temperature and in the presence of a real field. The eigenvalues of the transfer 
matrix, which give the correlation length, are, however, not real. The situation could, in 
some aspects, be compared to the phase transition in the one-dimensional n-component 
model with n < 1 (Balian and Toulouse 1974). The phase transition at finite temperature 
was also considered for the ID Potts model in the case of antiferromagnetic interaction and 
0 < q < 2 ( W u  1983). 

The density of zeros can be defined in both regimes. Its divergence follows the same 
critical exponent f for all q except q = 1. The q = 1 model is a particular case with no 
divergence of the density of zeros. 

We have also established the duality relation between the zeros in the complex field 
plane with those in the complex temperature plane. 
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